// 复杂度: O(n) voidinit(){ phi[1] = 1; for (int i = 2; i < MAXN; ++i) { if (!vis[i]) { phi[i] = i - 1; pri[cnt++] = i; } for (int j = 0; j < cnt; ++j) { if (1ll * i * pri[j] >= MAXN) break; vis[i * pri[j]] = 1; if (i % pri[j]) { phi[i * pri[j]] = phi[i] * (pri[j] - 1); } else { // i % pri[j] == 0 // 换言之,i 之前被 pri[j] 筛过了 // 由于 pri 里面质数是从小到大的,所以 i 乘上其他的质数的结果一定也是 // pri[j] 的倍数 它们都被筛过了,就不需要再筛了,所以这里直接 break // 掉就好了 phi[i * pri[j]] = phi[i] * pri[j]; break; } } } }
2.筛法求欧拉函数
1 2 3 4 5 6 7 8 9 10 11
voidphi_table(int n, int* phi){ for (int i = 2; i <= n; i++) phi[i] = 0; phi[1] = 1; for (int i = 2; i <= n; i++) if (!phi[i]) for (int j = i; j <= n; j += i) { if (!phi[j]) phi[j] = j; phi[j] = phi[j] / i * (i - 1); } }
3.筛法求莫比乌斯函数
1 2 3 4 5 6 7 8 9 10 11 12 13 14
voidpre(){ mu[1] = 1; for (int i = 2; i <= 1e7; ++i) { if (!v[i]) mu[i] = -1, p[++tot] = i; for (int j = 1; j <= tot && i <= 1e7 / p[j]; ++j) { v[i * p[j]] = 1; if (i % p[j] == 0) { mu[i * p[j]] = 0; break; } mu[i * p[j]] = -mu[i]; } } }
4.筛法求约数个数
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// 用d表示i的约数个数, num表示i的最小质因子出现次数。 voidpre(){ d[1] = 1; for (int i = 2; i <= n; ++i) { if (!v[i]) v[i] = 1, p[++tot] = i, d[i] = 2, num[i] = 1; for (int j = 1; j <= tot && i <= n / p[j]; ++j) { v[p[j] * i] = 1; if (i % p[j] == 0) { num[i * p[j]] = num[i] + 1; d[i * p[j]] = d[i] / num[i * p[j]] * (num[i * p[j]] + 1); break; } else { num[i * p[j]] = 1; d[i * p[j]] = d[i] * 2; } } } }
5.筛法求约数和
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
voidpre(){ g[1] = f[1] = 1; for (int i = 2; i <= n; ++i) { if (!v[i]) v[i] = 1, p[++tot] = i, g[i] = i + 1, f[i] = i + 1; for (int j = 1; j <= tot && i <= n / p[j]; ++j) { v[p[j] * i] = 1; if (i % p[j] == 0) { g[i * p[j]] = g[i] * p[j] + 1; f[i * p[j]] = f[i] / g[i] * g[i * p[j]]; break; } else { f[i * p[j]] = f[i] * f[p[j]]; g[i * p[j]] = 1 + p[j]; } } } for (int i = 1; i <= n; ++i) f[i] = (f[i - 1] + f[i]) % Mod; }